
Software Engineering	

Andreas Zeller • Saarland University

Principles of
Software Design

1 These slides are based on Grady Booch: Object-Oriented Analysis and Design (1998), updated from various sources

The Challenge

• Software may live much longer than
expected	

• Software must be continuously adapted to
a changing environment	

• Maintenance takes 50–80% of the cost	

• Goal: Make software maintainable and
reusable – at little or no cost

2

Sequence 
Diagram

s: Squircle r: Rectangle c: Circle

User

resize(factor)

get_a()

a

set_radius(a' / 2)

set_a(a')

set_a(a')

set_b(a')

new a:
a' = a * factor

State Diagram

Not reserved
entry / reset() partially booked

fully bookedclosed

reserve()

cancel()
[bookedSeats == 1]

close()

cancel_flight()create_flight()

close()

cancel() reserve()
[availableSeats == 1]

cancel()
[bookedSeats > 1]

reserve()
[availableSeats > 1]

Associations between Objects

Underlined names indicate
concrete objects (instances),
which have concrete values
for their attributes.

⬅ attends lecturep1: Professor

name = "Phillip"

p2: Professor

name = "Andreas"

s1: Student

name = "Georg"

s2: Student

name = "Gerda"

s3: Student

name = "Gustav"

s4: Student

name = "Grete"

⬅ attends lecture

⬅ attends lecture

⬅ attends lecture

Object Model

+area(): double
+draw()
+set_position(position: Point)
+get_position(): Point

-position: Point = (10, 10)
Shape

+set_a()
+resize(factor:double)

{2 * k.radius = r.a = r.b}
Squircle

+area(): double
+draw()
+set_radius(radius:double)
+get_radius(): double

-radius: double = 1 {radius > 0}
Circle

+area(): double
+draw()
+set_a(length:double)
+set_b(length:double)
+get_a(): double
+get_b(): double

-a: double = 10 {a > 0}
-b: double = 10 {b > 0}

Rectangle

Abstract Class

Abstract Method Constraint

Initial Value

Composition

UML in a Nutshell

3

UML Recap

• Want a notation to express OO designs	

• UML = Unified Modeling Language	

• a standardized (ISO/IEC 19501:2005),
general-purpose modeling language	

• includes a set of graphic notation techniques
to create visual models of object-oriented
software-intensive systems

4

UML Creators

Grady Booch Jim Rumbaugh Ivar Jacobson

5

Object-Oriented Modeling in UML

includes the following design aspects: 	

• Object model: Which objects do we need?	

• Which are the features of these objects? 
(attributes, methods)	

• How can these objects be classified? 
(Class hierarchy)	

• What associations are there between the classes?	

• Sequence diagram: How do the objects act together?	

• State chart: What states are the objects in?

6

Object Model

+open()
+deposit()
+withdraw()
+may_withdraw()

-balance: double
-minimum_balance: double
-owner: string

Account

+set_overdraft_limit()
+may_withdraw()
+print_account_statement()

-overdraft_limit: double
Cheking_Account

+set_interest_rate()
+may_withdraw()

-interest_rate: double
-amortization_amount: double

Loan_Account

7

Associations

Professors have multiple students, 
and students have multiple professors.

-name: string
Professor

-name: string
Student0..*

0..*
⬅ attends lecture

8

Associations between Objects

Underlined names indicate
concrete objects (instances),
which have concrete values
for their attributes.

⬅ attends lecturep1: Professor

name = "Phillip"

p2: Professor

name = "Andreas"

s1: Student

name = "Georg"

s2: Student

name = "Gerda"

s3: Student

name = "Gustav"

s4: Student

name = "Grete"

⬅ attends lecture

⬅ attends lecture

⬅ attends lecture

9

Composition

A "squircle" consists of a circle on top of a square:

10

Composition

+area(): double
+draw()
+set_position(position: Point)
+get_position(): Point

-position: Point = (10, 10)
Shape

+set_a()
+resize(factor:double)

{2 * k.radius = r.a = r.b}
Squircle

+area(): double
+draw()
+set_radius(radius:double)
+get_radius(): double

-radius: double = 1 {radius > 0}
Circle

+area(): double
+draw()
+set_a(length:double)
+set_b(length:double)
+get_a(): double
+get_b(): double

-a: double = 10 {a > 0}
-b: double = 10 {b > 0}

Rectangle

Abstract Class

Abstract Method Constraint

Initial Value

Composition

11

Sequence 
Diagram

s: Squircle r: Rectangle c: Circle

User

resize(factor)

get_a()

a

set_radius(a' / 2)

set_a(a')

set_a(a')

set_b(a')

new a:
a' = a * factor

12

State Diagram

Not reserved
entry / reset() partially booked

fully bookedclosed

reserve()

cancel()
[bookedSeats == 1]

close()

cancel_flight()create_flight()

close()

cancel() reserve()
[availableSeats == 1]

cancel()
[bookedSeats > 1]

reserve()
[availableSeats > 1]

13

Sequence 
Diagram

s: Squircle r: Rectangle c: Circle

User

resize(factor)

get_a()

a

set_radius(a' / 2)

set_a(a')

set_a(a')

set_b(a')

new a:
a' = a * factor

State Diagram

Not reserved
entry / reset() partially booked

fully bookedclosed

reserve()

cancel()
[bookedSeats == 1]

close()

cancel_flight()create_flight()

close()

cancel() reserve()
[availableSeats == 1]

cancel()
[bookedSeats > 1]

reserve()
[availableSeats > 1]

Associations between Objects

Underlined names indicate
concrete objects (instances),
which have concrete values
for their attributes.

⬅ attends lecturep1: Professor

name = "Phillip"

p2: Professor

name = "Andreas"

s1: Student

name = "Georg"

s2: Student

name = "Gerda"

s3: Student

name = "Gustav"

s4: Student

name = "Grete"

⬅ attends lecture

⬅ attends lecture

⬅ attends lecture

Object Model

+area(): double
+draw()
+set_position(position: Point)
+get_position(): Point

-position: Point = (10, 10)
Shape

+set_a()
+resize(factor:double)

{2 * k.radius = r.a = r.b}
Squircle

+area(): double
+draw()
+set_radius(radius:double)
+get_radius(): double

-radius: double = 1 {radius > 0}
Circle

+area(): double
+draw()
+set_a(length:double)
+set_b(length:double)
+get_a(): double
+get_b(): double

-a: double = 10 {a > 0}
-b: double = 10 {b > 0}

Rectangle

Abstract Class

Abstract Method Constraint

Initial Value

Composition

UML in a Nutshell

14

Software Engineering	

Andreas Zeller • Saarland University

Principles of
Software Design

15 These slides are based on Grady Booch: Object-Oriented Analysis and Design (1998), updated from various sources

Principles 
of object-oriented design

• Abstraction	

• Encapsulation	

• Modularity	

• Hierarchy

Goal: Maintainability and Reusability

16

Principles 
of object-oriented design

• Abstraction	

• Encapsulation	

• Modularity	

• Hierarchy

17

Abstraction

Concrete Object General Principle

18

Abstraction…

• Highlights common properties of objects	

• Distinguishes important and unimportant
properties	

• Must be understood even without a
concrete object

19

Abstraction

“An abstraction denotes the essential
characteristics of an object that distinguish it from
all other kinds of objects and thus provide crisply
defined conceptual boundaries, relative to the
perspective of the viewer”

20

Perspectives
21

Example: Sensors
22

An Engineer’s Solution

void check_temperature() {	
 // see specs AEG sensor type 700, pp. 53	
 short *sensor = 0x80004000;	
 short *low = sensor[0x20];	
 short *high = sensor[0x21];	
 int temp_celsius = low + high * 256;	
 if (temp_celsius > 50) {	
 turn_heating_off()	
 }	
}

23

Abstract Solution
typedef float Temperature;	
typedef int Location;	
!
class TemperatureSensor {	
public:	
 TemperatureSensor(Location);	
 ~TemperatureSensor();	
!
 void calibrate(Temperature actual);	
 Temperature currentTemperature() const;	
 Location location() const;	
!
private: …	
}

All implementation
details are hidden

24

More Abstraction
25

Principles 
of object-oriented design

• Abstraction – hide details	

• Encapsulation	

• Modularity	

• Hierarchy

26

Principles 
of object-oriented design

• Abstraction – Hide details	

• Encapsulation	

• Modularity	

• Hierarchy

27

Encapsulation

• No part of a complex system should
depend on internal details of another	

• Goal: keep software changes local	

• Information hiding: Internal details  
(state, structure, behavior) become the
object’s secret

28

Encapsulation

“Encapsulation is the process of
compartmentalizing the elements of an abstraction
that constitute its structure and its behavior;
encapsulation serves to separate the contractual
interface of an abstraction and its implementation.”

29

Encapsulation
30

An active Sensor
class ActiveSensor {	
public:	
 ActiveSensor(Location)	
 ~ActiveSensor();	
!
 void calibrate(Temperature actual);	
 Temperature currentTemperature() const;	
 Location location() const;	
!
 void register(void (*callback)(ActiveSensor *));	
!
private: …	
}

called when
temperature

changes

Callback management is the sensor’s secret

31

Anticipating Change

Features that are anticipated to change
should be isolated in specific components	

• Number literals	

• String literals	

• Presentation and interaction

32

Number literals

int a[100]; for (int i = 0; i <= 99; i++) a[i] = 0;

const int SIZE = 100;	
int a[SIZE]; for (int i = 0; i < SIZE; i++) a[i] = 0;

const int ONE_HUNDRED = 100;	
int a[ONE_HUNDRED]; …

33 If one searches for “100”, one will miss the “99” :-(

Number literals

double sales_price = net_price * 1.19;

final double VAT = 1.19;	
double sales_price = net_price * VAT;

34

String literals

if (sensor.temperature() > 100)	
 printf(“Water is boiling!”);

if (sensor.temperature() > BOILING_POINT)	
 printf(message(BOILING_WARNING,	
 “Water is boiling!”);

if (sensor.temperature() > BOILING_POINT)	
 alarm.handle_boiling();

35

Principles 
of object-oriented design

• Abstraction – Hide details	

• Encapsulation – Keep changes local	

• Modularity	

• Hierarchy

36

Principles 
of object-oriented design

• Abstraction – Hide details	

• Encapsulation – Keep changes local	

• Modularity	

• Hierarchy

37

Modularity

• Basic idea: Partition a system such that
parts can be designed and revised
independently (“divide and conquer”)	

• System is partitioned into modules that
each fulfil a specific task	

• Modules should be changeable and
reuseable independent of other modules

38

Modularity
39

Modularity

“Modularity is the property of a system that has
been decomposed into a set of cohesive and loosely
coupled modules.”

40

Module Balance

• Goal 1: Modules should hide information –
and expose as little as possible	

• Goal 2: Modules should cooperate – 
and therefore must exchange information	

• These goals are in conflict with each other

41

Principles of Modularity

• High cohesion – Modules should contain
functions that logically belong together	

• Weak coupling – Changes to modules
should not affect other modules	

• Law of Demeter – talk only to friends

42

High cohesion

• Modules should contain functions that
logically belong together	

• Achieved by grouping functions that work on
the same data	

• “natural” grouping in object oriented design

43

Weak coupling

• Changes in modules should not impact
other modules	

• Achieved via	

• Information hiding	

• Depending on as few modules as possible

44

Law of Demeter
or Principle of Least Knowledge

• Basic idea: Assume as little as
possible about other modules	

• Approach: Restrict method
calls to friends

45 Demeter = Greek Goddess of Agriculture; grow software in small steps; signify a bottom-up philosophy of programming

Call your Friends

A method M of an object O should only call
methods of	

1. O itself	

2. M’s parameters	

3. any objects created in M	

4. O’s direct component objects

“single dot rule”

46 http://en.wikipedia.org/wiki/Law_of_Demeter

Demeter: Example
class Uni {	
 Prof boring = new Prof();	
 public Prof getProf() { return boring; }	
 public Prof getNewProf() { return new Prof(); }	
!
}

class Test {	
 Uni uds = new Uni();	
 public void one() { uds.getProf().fired(); }	
 public void two() { uds.getNewProf().hired(); }	
}

47

Demeter: Example
class Uni {	
 Prof boring = new Prof();	
 public Prof getProf() { return boring; }	
 public Prof getNewProf() { return new Prof(); }	
 public void fireProf(...) { ... }	
}

class BetterTest {	
 Uni uds = new Uni();	
 public void betterOne() { uds.fireProf(...); }	
!
}

48

Demeter effects

• Reduces coupling between modules	

• Disallow direct access to parts	

• Limit the number of accessible classes	

• Reduce dependencies	

• Results in several new wrapper methods
(“Demeter transmogrifiers”)

49

Principles 
of object-oriented design

• Abstraction – Hide details	

• Encapsulation – Keep changes local	

• Modularity – Control information flow 
High cohesion • weak coupling • talk only to friends	

• Hierarchy

50

Principles 
of object-oriented design

• Abstraction – Hide details	

• Encapsulation – Keep changes local	

• Modularity – Control information flow 
High cohesion • weak coupling • talk only to friends	

• Hierarchy

51

Hierarchy

“Hierarchy is a
ranking or ordering
of abstractions.”

52

Central Hierarchies

• “has-a” hierarchy – 
Aggregation of abstractions	

• A car has three to four wheels	

• “is-a” hierarchy – 
Generalization across abstractions	

• An ActiveSensor is a TemperatureSensor

53

Central Hierarchies

• “has-a” hierarchy – 
Aggregation of abstractions	

• A car has three to four wheels	

• “is-a” hierarchy – 
Generalization across abstractions	

• An ActiveSensor is a TemperatureSensor

54

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions	

• Liskov principle – Subclasses should not
require more, and not deliver less	

• Dependency principle – Classes should
only depend on abstractions

55

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions	

• Liskov principle – Subclasses should not
require more, and not deliver less	

• Dependency principle – Classes should
only depend on abstractions

56

Open/Close principle

• A class should be open for extension, 
but closed for changes	

• Achieved via inheritance and dynamic binding

57

An Internet Connection

void connect() {	
 if (connection_type == MODEM_56K)	
 {	
 Modem modem = new Modem();	
 modem.connect();	
 }	
 else if (connection_type == ETHERNET) …	
 else if (connection_type == WLAN) …	
 else if (connection_type == UMTS) …	
}

58

Solution with Hierarchies

MyApp
connect()

Connection
connect()
hangup()

ModemConnection
connect()
hangup()

WLANConnection
connect()
hangup()

EthernetConnection
connect()
hangup()

59

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions	

• Liskov principle – Subclasses should not
require more, and not deliver less	

• Dependency principle – Classes should
only depend on abstractions

60

Liskov Substitution Principle

• An object of a superclass should always be
substitutable by an object of a subclass:	

• Same or weaker preconditions	

• Same or stronger postconditions	

• Derived methods should not assume more
or deliver less

61 http://en.wikipedia.org/wiki/Liskov_substitution_principle

Circle vs Ellipse

• Every circle is an
ellipse	

• Does this hierarchy
make sense?	

• No, as a circle
requires more and
delivers less

Circle
draw()

Ellipse
draw()

62

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions	

• Liskov principle – Subclasses should not
require more, and not deliver less	

• Dependency principle – Classes should
only depend on abstractions

63

Dependency principle

• A class should only depend on abstractions
– never on concrete subclasses 
(dependency inversion principle)	

• This principle can be used to break
dependencies

64

Dependency
// Print current Web page to FILENAME.	
void print_to_file(string filename)	
{	
 if (path_exists(filename))	
 {	
 // FILENAME exists;	
 // ask user to confirm overwrite	
 bool confirmed = confirm_loss(filename);	
 if (!confirmed)	
 return;	
 }	
!
 // Proceed printing to FILENAME	
 ...	
}

65

Cyclic Dependency

Constructing, testing, reusing individual
modules becomes impossible!

Core

+print_to_file()

UserPresentation

+confirm_loss()

invokes

invokes

66

Dependency
// Print current Web page to FILENAME.	
void print_to_file(string filename, Presentation *p)	
{	
 if (path_exists(filename))	
 {	
 // FILENAME exists;	
 // ask user to confirm overwrite	
 bool confirmed = p->confirm_loss(filename);	
 if (!confirmed)	
 return;	
 }	
!
 // Proceed printing to FILENAME	
 ...	
}

67

Depending on 
Abstraction

Core

+print_to_file()

Presentation
+confirm_loss()

UserPresentation

+confirm_loss()

AutomatedPresentation

+confirm_loss()

return true;ask user

68

Choosing
Abstraction

• Which is the
“dominant”
abstraction?	

• How does this
choice impact the
remaining system?

69 More on this topic: aspect-oriented programming

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions	

• Liskov principle – Subclasses should not
require more, and not deliver less	

• Dependency principle – Classes should
only depend on abstractions

70

Principles 
of object-oriented design

• Abstraction – Hide details	

• Encapsulation – Keep changes local	

• Modularity – Control information flow 
High cohesion • weak coupling • talk only to friends	

• Hierarchy – Order abstractions  
Classes open for extensions, closed for changes • Subclasses that
do not require more or deliver less • depend only on abstractions

71

Principles 
of object-oriented design

• Abstraction – Hide details	

• Encapsulation – Keep changes local	

• Modularity – Control information flow 
High cohesion • weak coupling • talk only to friends	

• Hierarchy – Order abstractions 
Classes open for extensions, closed for changes • Subclasses that
do not require more or deliver less • depend only on abstractions

Goal: Maintainability and Reusability

72

